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Following heuristic arguments, analytic expressions for the radial distribution 
function g(r) of one- and three-dimensional sticky hard-core fluids (i.e., square- 
well fluids in a scaled limit of infinite depth and vanishing width) are proposed. 
The expressions are derived in terms of the simplest Pad6 approximant of a 
function defined in the Laplace space that is consistent with the following 
physicaly requirements: y(r) -~ e~r)/k~rg(r) is finite at the contact point, and the 
isothermal compressibility is finite. In the case of sticky hard rods the expression 
obtained is exact, while in the case of sticky hard spheres it coincides with the 
solution of the Percus-Yevick equation. 

KEY WORDS: Radial distribution function; square-well fluid; sticky hard- 
core limit. 

1. I N T R O D U C T I O N  

Recently, a method  to get approximate  explicit expressions for the radial 
distribution function ( R D F )  g(r )  of hard-sphere fluids has been proposed.  (1) 
In  the method,  two very general condit ions on g(r) ,  namely (i) continuity 
for distances greater than the sphere diameter and (ii) convergence of  
the momen t  related to the compressibility, are implemented in the Laplace 
space by the use of Pad6 approximants.  The simplest approximant  coin- 
cides precisely with the exact solution of the Percus Yevick (PY) equation. 
The next step yields the solution of the generalized mean-spherical  
approximation.  

The extension of the method to fluids whose particles may interact 
attractively (via the Lennard-Jones  potential, for instance) is not  straight- 
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forward at all. In order to confront the problem, it is instructive to start 
with simple models. The sticky hard-sphere model introduced by Baxter (2) 
is perhaps the simplest one that incorporates attractive forces. It consists of 
a square-well fluid in a scaled limit of vanishing width and infinite depth. 
The exact solution of the PY equation for this model has been analyzed by 
several authors (2 5) and applied to the clustering in oil-continuous 
microemulsions. (6/The solution has also been compared with Monte Carlo 
simulations.(7) 

In this paper we follow heuristic arguments similar to those of ref. 1 to 
propose analytic expressions for the RDFs of sticky hard rods and sticky 
hard spheres. The reasoning and ansatz are essentially common in both 
cases, the dimensionality playing a purely geometrical role. The method 
provides expressions that coincide with the exact solution in the case of 
sticky hard rods and with the PY solution in the case of sticky hard 
spheres. This illustrates the possibility of obtaining reliable RDFs by 
adequately implementing very weak requirements. 

The paper is organized as follows. In Section 2 we present the basic 
definitions and equations that will be needed later on. In Section 3 the 
basic physical requirements used in our method are described and their 
consequences in the Laplace space are derived in parallel in the one- and 
three-dimensional cases. The ansatz of the method is worked out in Sec- 
tion 4: a function related to the Laplace transform of g(r) is approximated 
by a rational function, or Pad6 approximant, satisfiying the requirements 
of Section 3. Finally, the results are summarized and discussed in Section 5. 

2. B A S I C  E Q U A T I O N S  

The RDF g(r) of a fluid informs us about the spatial correlations 
between a pair of particles a distance r apart. (8) It also provides the 
thermodynamic quantities of the fluid. In particular, 

z pkB~ 2dkg ~ g(r) (2.1) 

1 
Ur =~ p f dr qo(r) g(r) (2.3) 

In these equations, p is the pressure, p is the number density, kB is the 
Boltzmann constant, T is the absolute temperature, q~(r) is the interaction 
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potential, Uox is the excess internal energy per particle, and d is the dimen- 
sionality. Thermodynamic consistency implies the following relationships: 

1 
(pz) (2.4) 

)~ Op 

c?uex 2 ~z (2.5) P a p  = - - k u r  - ~  

At low densities, g(r) can be conveniently expressed in terms of a 
power series expansion (81 

y(r) =- e~(r~/k"rg(r) = 1 + ~ y,(r) p" (2.6) 
n = l  

The first-order coefficient is 

y1(r) = f dr' f ( r ' )  f ( I r -  r'l) (2.7) 

where f (r)  =- e ~r) /k , r_  1 is the Mayer function. 
Let us consider now the square-well potential interaction: 

{ oo, r <  1 

p ( r ) =  - e ,  l < r < 2  (2.8) 

0, 2 < r  

where we have taken the diameter of the hard core as the length unit. For 
the square-well potential the virial equation of state, Eq. (2.1), and the 
energy equation of state, Eq. (2.3), become, respectively, 

z= l + 2a-ltl{2ay(2)-e~/k"r[2ay(2)- y(1)]} (2.9t 

u 2 
--ex= _d2a_lqe~/~Br [ dr ra-ly(r) (2.10) 

g J~ 

where q = pva, Va = (~/4) a/2 F(1 + d/2) being the volume of a d-dimensional 
sphere of unit diameter. The simplicity of the Mayer function for this 
potential allows one to evaluate explicitly the function yl(r)  through 
Eq. (2.7). The result for one-dimensional systems with 2 ~< 3 is 

yl(r) = 2x2(2-- 1) + 2 - (2x 2 + 2x + 1) r, 

= -- 2x(2 - 1 ) + 2 - r, 

= - 2 ( x +  2 + 1 ) x + ( x + 2 ) x r ,  

= 22x 2 - xgr, 

=- 0~ 

0 ~ r ~ 2 - 1  

2 - - 1 ~ r ~ 2  

2 ~ r ~ 2 + 1  

2 + 1 ~ r ~ 2 2  

r > 2 2  

(2.11) 
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where x -= e ~/kBT- 1. The result for d =  3 can be found, for instance, in ref. 9 
and will not  be quoted  herefl 

The  sticky hard  model  corresponds  to the limits 2 ~ 1 + and z ~ oo 
with e -  e~/kBr(2- 1 ) fixed, so that  the second virial coefficient is finite. The 
pa rame te r  e is a monotonica l ly  decreasing function of T a n d  measures  the 
degree of "adhesiveness." The  case of pure  hard-core  fluids is recovered if 

= 0. In the sticky hard-core  limit the Mayer  function becomes 

f ( r )=~6+(r -  1) + O ( r -  1 ) -  1 

where 

(2.12) 

6 +(x) -  lim a - l [ O ( x ) - O ( x - a ) ]  (2.13) 
a ~ O  + 

O(x) is the Heavis ide step function. The  relat ionship between g(r) and y(r) 
is then 

g(r) = y(r) O(r - 1 ) + ey(1 ) a + (r - 1 ) (2.14) 

In the limit 2 --* 1 + with c~ fixed, Eqs. (2.9) and (2.10) reduce to 

z = 1 + 2 d-  1~/{ y(1)  - c~[dy(1) + )5'(1 + )] } (2.15) 

Ue---5~ = -- d2 d-  lr/c~y (1) (2.16) 
g 

In Eq. (2.15) we have denoted 

)7'(1 +)-~ lira lira d ~. ~ x+r~ 1+ ~ y(r) (2.17) 

which in general must  be distinguished f rom 

d 
y ' (1  +)=- lira - -  lim y(r) 

r ~ l  + dr2+l+ 
(2.18) 

The consistency condit ions (2.4) and (2.5), expressed in terms of rt and e, 
become 

1 ct 
= ~?--~ (qz) (2.19) 

t / ~  = ~ (2.20) 

2 Note  a mispr in t  in the fourth line of Eq. (19) of ref. 9: the te rm 23r should  read 22r. 
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The density expansion coefficient y l ( r )  can be obtained either by taking the 
sticky hard-core limit on the square-well y l ( r )  or just by inserting (2.12) 
into (2.7). The results for d =  1 and d =  3 are, respectively, 

y l ( r )  = c~2[& + (r) + a + ( r -  2)] + (2c~ - 2 + r) 

x [-6~(r- 2 ) -  1], d = l  (2.21) 

6 y , ( r )  18~26+( r )+[  12~2 8 ( 1 - 3 c Q + 6 ( 1 - 2 ~ ) r - - ~ r 3 1  
7~ r 

• E O ( r -  2 ) -  13, d = 3  (2.22) 

3. P H Y S I C A L  R E Q U I R E M E N T S  

Two basic requirements that a physically meaningful approximation 
must fulfill are: (i) finiteness of y(r )  at r =  1, and (ii) finiteness of the 
isothermal compresibility Z (as long as the system is in a disordered state). 
We also require: (iii) the approximation is exact up to first order in density. 
Following the same approach as in ref. 1, we will implement the above 
conditions in the Laplace space. Thus, we define 

Y(t )  = dr e - r ' r ~ y ( r )  (3.1) 
1 

fo G(t)  = dr e tiring(r) 

= Y( t )  + ~y(1) e - '  (3.2) 

;? H ( t )  = dr e - r t r m [ g ( r )  - 1] 

= G ( t ) - m t  t -(m+~) (3.3) 

In the second step of (3.2) use has been made of (2.14). Equations such as 
Eq. (2.7) and the Ornstein Zernike relation involve d-dimensional Fourier 
convolution integrals. This suggests that we choose the value of m in 
Eqs. (3.1)-(3.3) under the criterion that the Fourier transform ~(q) o f  
a function ~(r) is related to the Laplace transform ~(t)  of rm~t(r) in a 
simple way. These geometrical considerations lead to m = 0 for d =  1 and 
m = d -  2 for d = odd ~> 3. For instance, ~(q) = - (2~/ iq)[  ~ ( iq )  - ~ (  - iq) l  
in d =  3. Here we will restrict ourselves to the cases d =  1 and d =  3. 

Let us first consider condition (iii). Insertion of the expansion (2.6), 
with y l ( r )  given by (2.21), into (3.l) yields 

e - '  [ ( 1  +c~t) e 2 ~ t - t +  1 1 
Y(t)=--7-+~/ - -  e 2, tz e - '  +(9(q2), d = l  (3.4) 
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By substituting (3.4) into (3.2) we get 

G(t) = [ro( t )  + Fl( t )  q] e - ' +  q[ ro ( t ) ]  2 e - a t +  C(n2), 

where 

~ t + l  
F o ( t ) -  , d =  1 

t 

2c~2t 2 -- ~t(t -- 2) -- t + 1 
Fl( t  ) = - t2 d = l  

d =  1 (3.5) 

(3.6) 

(3.7) 

Similar steps in the case d = 3 lead to 

G(t) = t[Fo(t  ) + Fl ( t )  tl] e - t -  12tl t[ro(t)  ] 2 e -2t + C(tl2), 

with 

d = 3  (3.8) 

F o ( t ) = ~ t - l + t - 2 + t - 3 ,  d = 3  (3.9) 

F l ( t ) = ( 1 2 a 2 - 1 2 ~ + ~ ) ( o ~ t  l + t  2 ) - 2 t - 3  

- 6 ( 1 - 4 ~ ) t - a + 1 2 t - 5 + 1 2 t  -6, d = 3  (3.10) 

Notice that the simplicity of Eq. (3.8) is a consequence of defining G(t) 
with m = 1 rather than m = 0, since yl(r),  Eq. (2.22), contains a term of the 
form r -  1. 

The structure of Eqs. (3.5) and (3.8) suggests that we define an 
auxiliary function F(t)  through the relations 

G( t )=  ~ r l " -X[F( t ) ] "e  -nt 
n = l  

F(t)  e ' 
d- -1  (3.11) 

1 - r l F ( t )  e - "  

G(t) = t ~" ( -  12tt) n - '  IF( t ) ]"  e ~ ~ t 

r t = l  

F(t)  e t 
d =  3 (3.12) 

= t 1 + 12r/F(t) e - t '  

The requirement (iii) implies that 

F(t)  = Fo(t ) + tlFl(t)  + (9(r/2) (3.13) 

with F o and F1 given by Eqs. (3.6) and (3.7) for d =  1 and (3.9) and (3.10) 
for d = 3 .  
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Let us see now which constraints on F(t) the condition y(1)=finite,  
requirement (i), imposes. Laplace inversion of (3.11) gives 

y(r) O(r-1)= ~ t l" ~r O(r-n), d = l  (3.14) 
n=l 

where the Laplace transform of ~l(r) is F(t ) -  c~y(1) and that of ~,(r), n >~ 2, 
is [F(t)]  ". Analogously, Laplace inversion of (3.12) gives 

y(r) O(r--1)= 1 ~ (--12;'/)" l~,(r--n) O(r--n), d = 3  (3.15) 
F 

n = l  

where now ~l(r) is the inverse Laplace transform of tF(t)-  ~y(1) and ~n(r), 
n/> 2, is that of t[F(t)]". According to Eqs. (3.14) and (3.15), y (1 )=  ~(0). 
Consequently, finiteness of y(1) implies the following asymptotic behavior: 

F(t)~c~+t -~ when t--*oo, d = l  (3.16) 

tF(t)~c~+t -1 when t ~ o o ,  d = 3  (3.17) 

the amplitude being precisely y(1), i.e., 

F(t) 
y(1) = lim - -  d =  1 (3.18) 

tF(t) 
y(1) = lira - -  d =  3 (3.19) 

t ~ o o O t + t  - 1 '  

The slope ofy(r)  at the contact point is given by the subleading term in the 
asymptotic behavior of F(t): 

/ ( 1 + ) =  lim t2{F(t)-(c~+t 1) y(1)], 
t ~ o o  

d =  1 (3.20) 

y ' ( l + ) = - y ( 1 ) +  lim t2[tF(t)-(~+t-1)y(1)],  d = 3  (3.21) 
t ~ o o  

For sticky hard rods ( d = l ) ,  [F(t)] '~t  ~ for large t, which implies 
in(r) ~ 6+(r) for small r (and n >/2). Consequently, y(r) possess a delta- 
comb contribution with peaks located at r = 2, 3,.... On the other hand, 
for sticky hard spheres (d=3) ,  t[F(t)]"~t -(~ 1) for large t, so that 
~ n ( r )  ~ r n-2, n/> 2, for small r. Thus, y(r) has a jump discontinuity at r = 2, 
but is continuous at r = 3, 4 ..... 

Finally, let us consider the condition Z=finite, requirement (ii). 
Notice that this condition implies, but is not implied by, the condition 
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limr ~ ~ g(r)= 1. The compressibility equation of state (2.2) can be recast 
into the form 

Z = 1 + 2~/lim H(t), d =  1 (3.22) 
t ~ O  

X = 1 - 240 lim d H(t), d = 3 (3.23) 
t-~o dt 

where H(t) is defined in (3.3). Finiteness of Z then leads to the following 
behavior of G(t) in the limit of small t: 

G(t)=t- l[ l+C(t)] ,  d = l  (3.24) 

G(t) = t 211 + C(t2)], d =  3 (3.25) 

Consequently, in this limit the auxiliary function F(t) behaves as 

l = e _ ,  [q  + 1 
F( t ) - ~ 1  

= q(1 - t) + t + (_9(t2), d =  1 (3.26) 

F ~ =  e - t  - 1 2 t / +  

( 1 2 1 t 3 + l t 4  ) = - 1 2 r /  1 -  t +-~ t --~ 

+ (1 - t) t 3 + (9(?), d =  3 (3.27) 

Before closing this section, we summarize the main points. First, we 
define the function G(t) by (3.2). Its exact density expansion for sticky hard 
rods [sticky hard spheres] is given by Eqs. (3.5)-(3.7) [Eqs. (3.8)-(3.10)]. 
The form of this expansion suggests the introduction of the function F(t) 
through Eq. (3.11) [Eq. (3.12)]. The behaviors of F(t) at large t and at 
small t are exactly described by Eq. (3.16) [Eq. (3.17)] and Eq. (3.26) 
[Eq. (3.27)], respectively. The large-t behavior is a consequence of the 
exact property y(r)= finite at r = 1, while the small-t behavior comes from 
the requirement Z = finite. 

4. R A T I O N A L  F U N C T I O N  A P P R O X I M A T I O N  

4.1. S t icky  Hard Rods 

The knowledge of F(t) at any density r/ allows one to get an explicit 
representation of the R DF for sticky hard rods [sticky hard spheres] 
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through Eq. (3.14) [Eq. (3.15)]. In principle, the exact determination of 
F(t) is a formidable task, especially in the case d =  3. As seen in the pre- 
vious section, any physically meaningful approximate method to get F(t) 
must comply with conditions (i) (3.16) [(3.17)] and (ii) (3.26) [(3.27)]. 
The exact density expansion, Eq. (3.13), can also be used as a guide. 
A simple way of reconciling conditions (i) and (ii) is by means of a rational 
function, or Pad6 approximant, for F(t): 

Pv(t) 
F(t) = (4.1) 

Q~(t) 

where Pv(t) and Q,( t )  denote polynomials of degrees v and #, respectively. 
This rational form is indeed the one adopted by F(t) in the tow-density 
limit, as seen in Eqs. (3.6) [(3.9)] and (3.7) [(3.10)]. The number of 
unknown coefficients is 1 + v + #. In the case d =  1, Eq. (3.26) imposes two 
constraints. Equation (3.16) implies that # = v and imposes one extra con- 
straint, namely that the ratio between the two first coefficients in the large-t 
expansion is precisely c~. Similarly, in the case d =  3, # = v + 1 and the 
number of constraints is 5 + 1. Consequently, v/> 1 for d = 1 and v >/2 for 
d =  3. Obviously, the simplest choice corresponds to equal numbers of 
unknowns and constraints, i.e., v = 1 for d =  1 and v = 2 for d =  3. These 
will be the cases considered in this paper. 

In the remainder of this subsection we will consider exclusively the 
case of sticky hard rods (d=  1). Our Pad6 approximant for F(t) is 

1 1 + L(1)t 
r ( t )  (4.2) 

q 1 + S(Ut 

with 

S(1) - L(1) = 1 - r/ (4.3) 
/7 

on account of Eq. (3.26). The large-t behavior of Eq. (4.2) is 

= ] ~ L  (1) S(1)- L (1) S(1)_ L (1) ] 
F(t) / /Ls(1)+ S(1) 2 t - i  S(1) 3 t 2+(_9( t  3) (4.4) 

The condition (3.16) implies that 

S(u _ L o) - 
(4.5) 
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The set of equations (4.3) and (4.5) leads to a quadrat ic  equat ion for S (1) 
or L (1). The criterion to choose the physical solution is that L (1) must  
vanish if e = 0. Thus, one gets 

1 
S ~ = ~ { [(1 - t/)(1 - t /+  4~t/)] 1/2 + 1 - r/} (4.6) 

1 
L (1) = ~ { [(1 - t/)(1 - t /+  4,~/)] 1/2 _ 1 + ~/} (4.7) 

Despite the little effort needed here to determine F(t ) ,  it turns out  that the 
corresponding Laplace t ransform G(t) ,  Eq. (3.11), coincides with the exac t  
solution to the problem, as shown in the Appendix. Of course, if one takes 

= 0, the exact solution for a system of hard  rods (m) is recovered. 
The contact  values y(1) and y '(1 +) are readily obtained from (3.18) 

and (3.20), respectively: 

1 L ~  
y(1) = ~r /S (1) (4.8) 

1 S ( 1 )  - L (1) 
y ' ( l + )  - (4.9) 

r/ So)  3 

Also, one easily gets 

lira H ( t )  = - 1  + �89 1 + qL~  - L ~)) (4.10) 
t ~ 0  

Substi tut ion of (4.8) and (4.10) into (2.16) and (3.22), respectively, yields 

u~ { [(1 - ~/)(1 - q + 4~t / ) ]1/2-  1 + q}2 
- - =  (4.11) 

4~r/(1 --t /)  

Z = (1 - q)[(1 - q)(1 - ~/+ 4~t/) ] v2 (4.12) 

Since in the method  followed here the sticky hard-core limit (2 ~ 1 +) 
is taken from the beginning, we cannot  use our  knowledge of the R D F  to 
get )~'(1 +) [cf. Eq. (2.17)]. As a consequence,  the virial equat ion of state, 
Eq. (2.15), cannot  be completely determined in the framework of our  
method.  A similar l imitation was already recognized by Seaton and 
Glandt ,  (7) who performed Monte  Carlo simulations working directly with 
sticky hard  spheres. Since in the case of sticky hard  rods we have obtained 
the exact R D F  with our  method,  we can use the thermodynamic  consistency 
conditions (2.19) and (2.20) to get z from (4.11) and (4.12). The result is 

[ ( 1  - r /)(1 - - t / +  4c~r/)] 1/2 _ 1 + t/ 
z = (4.13) 

2c~r/(1 - i t )  
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The value of 35'(1 +) can now be obtained from Eq. (2.15) by making use 
of (4.8) and (4.13). It turns out that )7'(I +) = y'(1 +). This means that both 
limits in Eqs. (2.17) and (2.18) can be interchanged in the case of sticky 
hard rods. 

In order to complete the thermodynamic description of the system, let 
us evaluate the excess free energy per particle aex. We start from the 
thermodynamic relation 

1 c~aex z -  1 

ks T Or/ r/ 
(4.14) 

A straightforward integration yields 

aex 

k s T  
[-(1 - r/)(1 - r/q- 4~r/)] I/2 - 1 q- ~/- 2c~r/ 

2at/ 

[(1 - ,7)(1 - r/+ 4c~r/) ] 1/2 - 1 + r/ 
+ l n  r / { [ ( l _ ~ / ) ( l _ r / + 4 c ~ r / ) ] m + l _ r / }  (4.15) 

Let us go back to the correlation functions. Laplace inversion of 
IF( t ) ]"  allows one to get ~,(r). The explicit expression for the RDF is then 

g(r) =-1 ~ ~{L(1)'] ~ ] 
~/n= lL \S ( l ) J  6 + ( r - n ) + ( " ( r - n ) e - ( ~  ~)/s")O(r-n) (4.16) 

where 

.! (c(','?-O(l_C. T 
~n(r) = ~ k! ( n -  k)! \~i-i~j \ S(~Ij - -  - -  

k = l  

1 r*- 
S(I) k ( k -  1)! 

(4.17) 

is a polynomial of degree n -  1. The exact RDF for sticky hard rods has 
already been derived by Seaton and Glandt. m) For the sake of complete- 
ness, we are also going to obtain the direct correlation function c(r), 
defined through the Ornstein-Zernike relation(8): 

h(q) 
g(q) (4.18) 

1 +r/~(q) 

where 

g(q) = 2 dr cos(qr) c(r) (4.19) 

822/72/3-4-20 
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is the Fourier transform 
latter is known, since ~(q)= H(iq)+ H ( -  iq). Thus, one gets 

2 ( L (~)2 L(1)S (1) 

5(q) - r/(S(1 ) + L(1) ) - S(1) _ L(1) -k- S ( 1 )  _ L(1) c o s  q 

1 c o s q - 1  s inq )  
+ S(1)_L(~) q2 q / 

of c(r), and h(q) is that of h(r)= g ( r ) - 1 .  The 

(4.20) 

Fourier inversion yields 

1 V L (a)2 L ( t ) S  (1) 

e(r)-q(SO)+L(i)) L S(i)_L(iiS+(r)ff S ( 1 ) _ L ( ~ i S + ( r -  1) 

( r _ , )  l + S ( 5 ~ L ( 1 )  1 0 ( 1 - r )  (4.21) 

As is well known, the PY approximation becomes exact for hard rods 
(a = 0). Let us see that this is not true in the more general case of sticky 
hard rods (a > 0). The PY closure is 

c(r) = g(r) -- y(r) 

=c~y(1) 3 + ( r -  1 ) - y ( r )  O ( 1 - r )  

(4.22a) 

(4.22b) 

where Eq. (2.14) has been used in the last step. The exact c(r), Eq. (4.21), 
is consistent with the PY c(r), Eq. (4.22b), if 

1 L(1)S  0)  
y(1) (4.23) 

at/S(a) 2 _ L(1) 2 

1 1 
y(1) - q L(1) -k- S (1) (4.24) 

In fact, both conditions are equivalent, as can be seen by using (4.5). Since 
y(1) is exactly given by (4.8), Eq. (4.23) is clearly not verified, unless 
L (1) = 0, i.e., ~ = 0. 

4.2. Sticky Hard Spheres 

In this subsection we consider the case of sticky hard spheres (d--3).  
The simplest Pad6 approximant (v =2,  # =  3) of the form (4.1) is 

1 1 + L(1)t + L(2)t 2 
F(t)--- 12r/ 1 +S(1) t+s(Z) tZ+s(3) t  3 (4.25) 
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with 

L ( 1 ) _ l + � 8 9  6r/ L(2) 
1 +2r/ 1 +2r/ 

S(1) = 3 q + 6r/ L(2) 
2 1 + 2 r /  l + 2 r /  

S(2)= 1 1 - q  1 - 4 r /  2 
2 1" + 2 ~  + 1 - - - ~  L ~ '  

S(3) = (1 - r/) 2 I - r /  L(2) 
12r/(1 +2r / )  1 + 2r/ 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

by application of condit ion (3.27). For  large t, Eq. (4.25) becomes 

1 [-L (2) L(1)S (3) -L(2)S  (2) t -  1 

fF(f)= 8(3)2 

L ( 1 ) S ( 2 ) S  (3) + L ( 2 ) ( S ( 1 ) S  (3) _ S (2 )  2) _ S(3)2 t -  2 + (_9(t-3)] 
S(3)3 2 

(4.30) 

Condi t ion (3.17) leads to 

L(2)S (3) 
L(1)S(3) _ L(2)S(2) = c~ (4.31) 

Substi tut ion of Eqs.(4.26)-(4.29) into Eq.(4.31)  yields the following 
quadrat ic  equation:  

12r/[(1 - r/)(1 + 2r/) + ~(14q 2 - 4 r / -  1)] L (2): 

+ (l_r/)2(l+2rl_12c~q)L(2)_cz(1 r/)2(1 1 - + U / ) = 0  (4.32) 

The physical root  is the one that  vanishes when c~---, 0. Its expression is 

L(2) = (1 - r/)2 
24q 

(1 + 2r/)[24ezr/(51/- 2)/( 1 - r/)2 + 24c~q/(1 - q) + 1 ] 1/2 _ 1 - 2r /+ 12c~r/ 
x 

(1 - r/)(1 + 2r/) + o~(14r/2 - 4 r / -  1 ) 

(4.33) 

While the coefficients L (1) and S (1) in the case of sticky hard rods are real 
for any ~ > 0  and any r /<  1 [cf. Eqs. (4.6) and (4.7)], the coefficient L 12) 
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in Eq. (4.33) is a complex number if ~ > ~c = (2 + xf2)/4 = 0.8536 and 
t/_ < r/< t/+, where 

240~ 2 -  12a + 1 _ 6o~(16c~ 2 -  16~ + 2) 1/2 

q+ -- 120g 2 -- 24c~ + 1 
(4.34) 

In the limit c t~ac ,  one gets t/+ ~ t / c = ( 3  x/-2-4)/2=0.1213.  The Pad6 
approximant (4.25) is meaningless if ~ > " c  and t / _ < t / < q + .  As one 
approaches the critical point (t/c, ac), the coefficient L ~2) diverges to infinity. 

The approximate RDF defined by Eqs. (4.25)-(4.29) and (4.33) coin- 
cides with the exact solution of the PY equation for sticky hard spheres 
derived by Baxter, (2) as can be easily seen by taking into account the 
relationships between Baxter's parameters r and # and our parameters 
and L(2): 

1 
c~ = (4.35) 

12z 

L(2)_ # 1 - q (4.36) 
1DI 1 + 2q - #  

The critical behavior of this solution has been analyzed in detail by 
Fishman and Fisher. (5) 

Following our method, we now use Eq. (4.30) in Eqs. (3.19) and (3.21) 
to get 

1 L ~2) 
~y(1) lZt/S t3) (4.37) 

1 L(1)S(2)S  (3) + L ( 2 ) ( S ( I ) S  (3) - S (2)2) - S (3)2 
y'(1 +) = - y(1) q- - -  (4.38) 

12r/ S(3) 3 

O n  the other hand, from the expansion of F ( t )  in powers of t up to order 
t 6 o n e  obtains 

d 1 
lim -dtt H ( t ) = t~O (1 + 2q) 2 

x [ l ( 4 - q ) ( 2 + q 2 ) - ( 1 - r / ) 3 L ( 2 ) - 6 q ( 1 - t / ) 2 L  (2,2] (4.39) 

Substitution of (4.37) and (4.39) into (2.16) and (3.23) gives the energy and 
compressibility equations of state, respectively. As discussed in the case of 
sticky hard rods, the quantity 37'(1 § ), which is needed in the virial equation 
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of state, cannot be determined once the sticky hard-core limit has been 
taken. We cannot use now the thermodynamic consistency conditions to 
obtain the virial equation of state from the energy and compressibility 
equations of state, as the latter are not exact. Nevertheless, Baxter ~2) was 
able to derive the virial equation of state by carefully taking the limit 
2 ~ 1 + in Eq. (2.9) and using the PY closure, Eq. (4.22a). From that result 
and Eq. (4.37) one can get y ( 1  +): 

)~'(1 + ) = y'(1 + ) - 72q2~3 Ey(1 )]3 (4.40) 

Thus, in contrast to what happens in the case d =  1, the order of the limits 
in Eqs. (2.17) and (2.18) is relevant in the case d = 3 .  The difference 
between 9'(1 +) and y'(1 +) is of second order in ~/and of third order in ~. 
While f ( 1  + ) is a remnant of the behavior of y(r) in the shrinking interval 
1 < r < Z ,  y'(1 +) is the limit value of y'(2+). 

5. D I S C U S S I O N  

In this paper we have been exploring the possibility of developing a 
method to get reliable analytic approximations for the radial distribution 
function (RDF) g(r) of fluids whose particles interact via a hard-core 
potential (0(r) with an attractive tail. In particular, we have taken the sticky 
hard-core potential in one and three dimensions as a simple and insightful 
test case. This potential is the limit of a square-well potential as its depth 
goes to infinity and its width goes to zero in a scaled wayJ 2) 

The RDF is constructed by imposing the following exact conditions: 
(i) the auxiliary function y(r)=e~)/kBrg(r) is finite at the contact point, 
(ii) the isothermal compressibility is finite in disordered states, and (iii) the 
exact zeroth-order and first-order coefficients in the density expansion of 
g(r) are given. The two first conditions are rather qualitative, while the 
third condition is more explicit. The latter, however, is used only as a tool 
to suggest the introduction of a function F(t) algebraically related to the 
Laplace transform of g(r). The choice of F(t) as a relevant function is 
supported by the fact that the explicit form of g(r) for any density and 
temperature follows easily from that of F(t). The interesting point is that 
conditions (i) and (ii) impose serious constraints on the behavior of F(t) 
for large t and small t, respectively. This shows that the choices of condi- 
tions (i)-(iii) as the basic physical requirements strongly restrict the set of 
admissible approximations. The specific idea of the method consists of 
assuming for F(t) the simplest Pad6 approximant satisfying the above 
constraints. This is, in fact, the only approximation made in this work. 

In the one-dimensional case (sticky hard rods), the result obtained 
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with our method coincides with the exact solution of the problem. In the 
three-dimensional case (sticky hard spheres), our approximation coincides 
with the Percus-Yevick (PY) solution. This confirms the adequacy of our 
choices and shows how a careful use of very weak requirements can lead 
to quite good analytic approximations. In this respect, it is worthwhile to 
point out that the PY equation is not exact for sticky hard rods. 

Although the PY equation provides an excellent RDF for pure hard 
spheres, some discrepancies with simulation have been observed in the case 
of sticky hard spheres. ~7) The method described here can easily be extended 
beyond the PY level by considering the next Pad6 approximant. The two 
new coefficients can be determined by imposing extra requirements, such as 
consistency between the different routes to the equation of state. Work is 
now in progress along this direction. In fact, the generalized mean spherical 
approximation for pure hard spheres was derived in ref. 1 following this 
idea. 3 

The generalization to any attractive hard-core potential of the method 
described in this paper is not an easy task. As a next step, we are now 
analyzing the case of the three-dimensional square-well fluid by proposing 
the following form for the function F ( t )  introduced in Eq. (3.12): 

1 1+7 t 
F(t)= 1 2 t l l + S ~ l ) t + S ( 2 ) t 2 + S ( 3 ) t 3 [ A + ( l _ A )  e (z- 1)t] (5.1) 

where A is a bounded rational function. The exact condition (3.17) (with 
e = 0 )  is automatically satisfied. On the other hand, the coefficients are 
determined by requiring the exact condition (3.27) and the continuity 
condition of y ( r )  at r=4 .  In the sticky hard-sphere limit, 
A 1 ~ (o~ 1 _ ~;-1 ...[_ 8(2) /S(3) ) (2  _ 1), and the results derived in this paper 
are recovered. Equation (5.1) is suggested by the known low-density 
behavior of g ( r )  and also by the exact form of F ( t )  for the one-dimensional 
square-well system. This is justified by the fact that, despite the important 
physical differences between the RDF of sticky hard rods and that of 
sticky hard spheres, they exhibit, in the framework of our approximate 
method, a very close mathematical structure in the Laplace space, where 
the dimensionality essentially plays a merely geometrical role. Of course, 
this formal similarity is not expected to hold exactly. 

3 Note two misprints in ref. 1: the factor ;7 in the denominator  of Eq. (3.17) should be 
removed; in Eq. (3.18), the sign in front of (1 + 2t/) should be minus. 
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A P P E N D I X  

In this appendix we show that the RDF obtained in Section 4 for 
sticky hard rods is exact. 

In 1953, Salsburg eta/. (12) were able to derive exact expressions for the 
distribution functions in a one-dimensional fluid whose particles interact 
with a nearest-neighbor pair potential. This includes the case of sticky hard 
rods. Taking the Laplace transform on the thermodynamic limit of 
Eq. (23b) of ref. 12, we easily get (3.11) with 

F(t)  = I e' (2(t + c____.._~) (A1) 
a ( c )  

where 

(2(t) = dr e - r t [ f ( r )  + 1 ] (A2) 

and the real constant c is determined by the condition 

1 O'(c) 
-+ r /~ - -~=0  (A3) 

In the case of sticky hard rods the Mayer function is given by (2.12), 
so that 

Q(t) = e - '  (~ + ~) (A4) 

and (At) becomes 

1 1 + [~/(1 + ~ c ) ]  t 
F(t) = - ( A 5 )  

q 1 + (1/c) t 

The condition for c, Eq. (A3), takes the form 

1 1 
- =  1 + -  (A6)  
q c(1 + ~c) 

If we identify L(I)= e/(1 + ac) and S(J)= 1/c, Eq. (4.5) is automatically 
satisfied and Eq. (4.,3) is equivalent to (A6). Consequently, the exact form 
of the function F(t), Eq. (A5), coincides with the one obtained in this 
paper, Eq. (4.2). 
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